Plant Systematics Collection

دوشنبه 21 آذر 1390 06:34 ب.ظ

نویسنده : عسکر اله قلی

 




دیدگاه ها : نظرات
آخرین ویرایش: - -

The Angiosperms or flowering plants

دوشنبه 21 آذر 1390 06:30 ب.ظ

نویسنده : عسکر اله قلی
Phylum Magnoliophyta (the Angiosperms or flowering plants)

Also called the Angiosperms, the Magnoliophyta are the flowering plants. This group is the most diverse, ecologically dominant and economically important of all the living plant phyla. Although woody forms (trees and shrubs) are common in this group, herbaceous members are ubiquitous. The flowering plants are traditionally divided into two groups: Class Magnoliopsida (the "dicots") and Class Liliopsida(the "monocots"). There are many characteristics that distinguish these two groups but the two most important for field identification are the leaves and the flowers. The monocots tend to have parallel-veined leaves and their flower parts tend to occur in multiples of 3. The dicots have leaves with reticulate or net-like veins and tend to produce flower parts in multiples of 4 or 5. 
*NOTE: Family placement  follows Radford, A.E., H.E. Ahles and C.R. Bell. 1968. Manual of the Vascular Flora of the Carolinas. The University of North Carolina Press, Chapel Hill. 
 

Class MAGNOLIOPSIDAClass LILIOPSIDA
 Dicots
 Monocots




دیدگاه ها : نظرات
آخرین ویرایش: - -

Flowering Plants

دوشنبه 21 آذر 1390 06:27 ب.ظ

نویسنده : عسکر اله قلی

Phylum

Magnoliophyta)

Links to Class Pages:

return to phylum directory

Phylum consisting of nearly a quarter of a million species of angiosperms. This largest radiation of land plants dates back only to the early Cretaceous in the fossil record and has become the dominant plant group in most biomes because of specialized vegetative and reproductive features. The phylum is traditionally divided into two classes, the dicots and monocots; however, this division is now being challenged.

Vegetative Characteristics: Plants range in habit and form from minute, aquatic duckweeds to giant, buttressed forest trees. The early radiation of angiosperms includes woody plants, small herbaceous "paleoherbs," and emergent or floating aquatics. Subsequent radiations have produced annuals, vines, stem succulents, epiphytes, carnivores, parasites, and saprophytes. Except for some putatively primitive dicots, aquatics, and many monocots, vessel elements are characteristic of angiosperms. Leaves are generally broad and possess advanced venation patterns.

Reproductive Characteristics: Plants are typified by a true flower which has been interpreted to be either a highly modified shoot (with modified stem and leaves) or a condensed and reduced compound strobilus or inflorescence. Floral parts generally include sepals, petals, stamens, and carpels. Ovules are contained within the megasporophylls (the carpels - or fused carpels = ovary) that is sealed in all but several putatively primitive angiosperm families. Pollination (pollen movement to the receptive stigma) is mediated by wind, water, or a wide variety of animal vectors. Self pollination, as well as parthenogenesis, are common. Double fertilization occurs in all members of the phylum to produce the unusual stored food tissue called endosperm. Seeds are disseminated via diverse kinds of fruits and associated mechanisms: follicles, capsules, berries, drupes, samaras, nuts, and achenes.




دیدگاه ها : نظرات
آخرین ویرایش: - -

Phylum Directory

سه شنبه 8 آذر 1390 06:15 ب.ظ

نویسنده : عسکر اله قلی

 

To access images/information for a particular phylum, click on its name:


Lycodiophyta(Club Mosses)Ginkgophyta(Ginkoes)
Equisetophyta(Horsetails)Pinophyta (Conifers)
Psilotophyta(Wisk Ferns)Gnetophyta(Vessel-bearing Gymnosperms)
Polypodiophyta(Ferns)Magnoliophyta (Flowering Plants)
Cycadophyta(Cycads)



دیدگاه ها : نظرات
آخرین ویرایش: - -

Classification Group Explanations

سه شنبه 8 آذر 1390 06:10 ب.ظ

نویسنده : عسکر اله قلی
 

All organisms are split into five Kingdoms:

Animal Kingdom: organisms that usually move around and find their own food.

Plant Kingdom: organisms that make their own food and do not actively move around.

Fungi Kingdom: organisms that absorb food from living and non-living things.

Protist Kingdom: organisms that have single, complex cells.

Moneran Kingdom: organisms that have single, simple cells.

 

Animal Kingdom

The Animal Kingdom is split into several Phyla. Each Phylum group contains organisms that have things in common. Below is a list of some animal Phyla:

Chordate Phylum: All the animals which have a backbone. Includes: Fish, Reptiles, Birds, Amphibians, and Mammals.

Arthropod Phylum: All the "jointed legged" animals. All of these animals have an exoskeleton, meaning the skeleton is on the outside of the body. Include: Insects, Arachnids, and Crustaceans.

Mollusk Phylum: Soft-bodied animals that sometimes have a hard shell. Includes: Snails, Slugs, Octopus, Squid, Clams, Oysters, and Mussels.

Annelid Phylum: Segmented worms. Includes: Earthworms and Leeches.

Rotifer Phylum: Tiny, microscopic animals with a wheel-shaped mouth and tiny hairs.

Nematode Phylum: Very tiny worms with no segments in their bodies. Also called Roundworms.

Tardigrade Phylum: Tiny, slow-moving animals with four body segments and eight legs. Includes Water Bears.

Cnidarian Phylum: Soft-bodied, jelly-like animals with tentacles and venom glands. Includes: Hydra, Jellyfish, Anemones, and Coral.

Echinoderm Phylum: Often spiny animals, with several "arms" reaching out from the center of its body. Includes: Starfish and Sea Urchins. We do not have these in our area!

Platyhelminthes Phylum: Soft, flat-bodied worms. Includes: Planarians and Tapeworms.

To find out more about each Phylum, click the links below:

Chordate Phylum
Arthropod Phylum
Mollusk Phylum
Annelid Phylum
Rotifer Phylum (coming soon!)
Nematode Phylum (coming soon!)
Cnidarian Phylum (coming soon!)
Tardigrade Phylum
Platyhelminthes Phylum (coming soon!)

Plant Kingdom

Instead of Phyla, the Plant Kingdom is split into Divisions. Each Divsion group contains organisms that have things in common. Below is a list of some plant Divisions:

Magnoliophyta Division: All "flowering" plants. These plants have leaves, stems, and roots. After flowering, they form fruits with seeds. Includes most crops, trees, shrubs, grasses, garden plants, and weeds.

Coniferophyta Divsion: Plants that bear cones. Includes: Pine Trees and Cedars.

Pteridophyta Division: Plants that have roots and stems, but do not have flowers or seeds. Instead, they spread with spores. Includes Ferns.

Bryophyta Division: Plants with very small leaves and stems, with no roots and no flowers. Usually grow very low to the ground. Includes: Mosses.

Lycopodiophyta Division: Small plants with green, branched stems, scale-like leaves, and no flowers. Usually grow very low to the ground. Includes: Club Mosses, Quillworts, and Spikemosses.

 

To find out more about a Division (Phylum), click the links below:

Magnoliophyta Division
Coniferophyta Division
Pteridophyta Division
Bryophyta Division
Lycopodiophyta Division

Fungi Kingdom

Just like Plants, the Fungi Kingdom is split into Divisions instead of Phyla. Each Divsion group contains organisms that have things in common. Below is a list of some fungi Divisions:

Basidiomycota Division: Many different forms, most of which help decompose and break down wood, litter, and animal poop. Includes: Mushrooms, Puffballs, Rusts, and Jelly Fungus.

To find out more about a Division (Phylum), click the link below: (coming soon!)

Basidiomycota Division

Protist Kingdom

The Protist Kingdom is split into several Phyla. Each Phylum group contains organisms that have things in common. Below is a list of some protist Phyla:

Protozoa Phylum: Tiny, microscopic organisms which reproduce by splitting in half to become two new organisms. Includes: Amoeba, Paramecium, and Sporozoa.

Euglenophyta Phylum: Tiny, microscopic organisms which have a flagella (tiny hair-like thing that helps them move through water). Some eat algae and keep it inside their bodies, using it to make food. Includes Euglena.

To find out more about a Phylum, click the links below: (coming soon!)

Protozoa Phylum
Euglenophyta Phylum

Moneran Kingdom

The Moneran Kingdom is split into several Phyla. Each Phylum group contains organisms that have things in common. Below is a list of some moneran Phyla:

Bacteria Phylum: These organisms are extremely important and can also be very dangerous. They live anywhere there is moisture, including inside animal's bodies. Some carry disease.

Cyanobacteria Phylum: These organisms are also known as Blue-green Algae. These algae are different from the Green Algae found in the Plant Kingdom.

To find out more about a Phylum, click the links below: (coming soon!)

Bacteria Phylum
Cyanobacteria Phylum

Viruses

Scientists have not yet figured out where to put viruses. We have a lot we need to learn about them. They do not currently belong in one of the five Kingdoms.

 





دیدگاه ها : نظرات
آخرین ویرایش: - -

Pteradophyta : Fern Division

پنجشنبه 3 آذر 1390 05:53 ب.ظ

نویسنده : عسکر اله قلی

 

Pteridophyta Taxonomy

Scientific Name:

Kingdom: Plantae

Division:

Classes:

Lycopodopsida (club-moss class)

Equisetopsida (horsetail class)

Polypodopsida (fern class)

Families:8

Lycopodiaceae (Club-moss Family)

Selaginellaceae (Spike-moss Family)

Equisetaceae (Horsetail Family)

Ophioglossaceae (1sps. Botricium lunaria)

Pteridaceae (Rock Break Family) (1sps. Cryptogramma stelleri)

Aspidiaceae (Fern Family)

Aspleniaceae (Spleenwort Fern Family) (1 sps. Asplinium trichomanes)

Polypodaceae (Polypody Fern Family) (1 sps. Polypodium sibiricum)

Genera: 11

Species: 26

English Name(s):

Fern division, Fern Sub-division, Spore Bearing Vasculars, ferns and fern allies

Gwich'in Name:


Division Pteridophyta Traits

Description:

Division Size:

World:

Families:

Genera:

Species: 20,000

North America:

Families:

Genera:

Species:

Yukon:

Families: 8

Genera:

Species:


Illustrated Key To Families in Division Pteridophyta

Note: Move cursor over image for note on what to look for. Click on image to enlarge.

Families of Polypodopsida Class: Fern Families

Pteridaceae: Cryptogramma stelleri

Aspidiaceae

Aspleniaceae: A.Trichomanes

Polypodiaceae: P.sibiricum

Families of other Pteridophya classes: non-fern Families

Lycopodiaceae

Selaginellaceae

Equisetaceae

Ophioglossaceae: B.Lunaria


Dicotomous Key To Division Pteridophyta

  • A: Plants with sporangia (spore producing bodies) in strobili (spore cone); or grape like cluster at end of a stalk; or in leaf axils:
    • B: Plants with one pinnate leaf; Sporangia in grape like cluster at end of a stalk:Ophioglossaceae (Adders-tounge Family) 1 sps in our area: B.lunaria (Moonwort)
    • B: Plants with sporangia in strobili; Leaves needle like, scale like, or appearing absent:
      • C: Stems with joints, Leaves appearing absent (leaves actually reduced to shethes around stem at joints): Equisetaceae (Horsetail Family)
      • C: Stems without joints; Leaves present needle or scale like:
        • D: Plants larger than most mosses; Strobili very distinct cone like structure:Lycopodiaceae (Club-moss family)
        • D: Plants not larger than most mosses; Strobili leafy or fleshy not so cone like: Selaginellaceae (Spikemoss Family)
  • A: Plants with sporangia (spore producing bodies) on under side or edge of leaves:
    • E: Fertile and sterile fronds (leafy branches) different; Sporangia on edges of curled up leaves of fertile fronds: Pteridaceae (Rock Break Fern Family) 1 sps. in our area:C.stelleria (Slender Cliff-break)
    • E: Fertile and sterile fronds similar; Sporangia in sori (sporangia clusters) on underside of leaves:
      • F: Fronds evergreen; Sori without inducia (covering): Polypodaceae (Polypody Fern Family) 1sps. in our area: P.sibiricum (Rock Polypody)
      • F: Fronds decidious (withering in autumn); Sori with inducia (covering):
        • G: Sori elongate; Leaf viens not reaching leaf edges: Asplenaceae (Spleenwort Fern Family) 1sps. in our area: A.trichomanes (Green Spleenwort)
        • G: Sori round; Leaf viens reaching leaf edges: Aspidiaceae (Fern Family)

Biology of Division Pteridophyta

Natural History:

The Pteridophytes (spore bearing vascular plants) have been around for 408 milloin years. The classes in this division represent some of the oldest lineages of land plants. The Lycopodopsida (clubmoss class) was the first branch of the evolutionary tree. Later the Equsitopsida (horsetail class) would split from the Ferns. From about 360MYA many of the Pteridophytes had developed to become very large trees. Clubmoss, horsetail and fern trees dominated earths land vegitation for more than 100 million years. It is the remains of these giant Pteridophytes that would over eons become the fossil fuels we use today. The time period of the giant Pteridophyta forests is known as the carboniferious period. Eventualy some species developed the ability to reproduce by seeds. One of these groups the Pteridosperms (seed ferns) would be the ancestors of the Gymnosperms (naked seed plants) and all modern seed plants.

Life Cycle:

The life cycles of the different classes and families of the Pteridophyta are quite unique. They do though share some common charactarists. In the Pteridophyte division both the sporophyte and gametophytegenerations live as free living plants. The sporophyte is much larger and longer lived than the gametophyte. It is the dominant generation and what we recongnize as ferns, clubmosses, et cetera. Though most Pteridophytes are homosporus producing spores of the same size and of no particular gender, some species are heterosporus which means they produce spores of different sizes and genders. Heteropory is found in different classes and families showing that it is a polyphyletic (not one ancesteral sps) charactaristic that was eveolved independently a number of times. Diagrams and discusions of the different life cycles will be on the family pages for this division.




دیدگاه ها : نظرات
آخرین ویرایش: - -

Life cycle in ferns

پنجشنبه 3 آذر 1390 05:51 ب.ظ

نویسنده : عسکر اله قلی

Pteridophyta (true ferns)

  • free-living sporophyte and gametophyte
  • vascular tissue
  • by far the most diverse non-seed land plant today
  • Review life cycle:



دیدگاه ها : نظرات
آخرین ویرایش: - -

Classification of Pteridophytes

پنجشنبه 3 آذر 1390 05:32 ب.ظ

نویسنده : عسکر اله قلی

A classification of the ferns and their allies
- a work in progress

Higher level classification
Lower level classification
Other useful resources

The following classification of the genera of ferns and their allies is a loose, perhaps tenuous, concensus of a number of published systems, some of which are available on the web. It tries to reflect contemporary views on phylogenetic relationships and as such will change from time to time. Of particular relevance at the moment are the studies of Kathleen Pryer, Alan Smith and Judith Skog summarised on the Tree of Life, James Reveal's work on Index Nominum Supragenericorum Plantarum Vascularium, Dick Brummit's work on Vascular Plants Families and Genera and Ellen Farr and Gea Zijlstra's Index Nominum Genericorum.

The complexity and difficulty of the classification of the ferns and their allies is matched by no other group. After more than two centuries of work, the arrangement of species into genera and genera into families is still a long way from settled with almost every new treatment or flora adopting a different system to any that went before. A quick look at fern synonymy reveals a bewildering history of name changes in taxa at all levels as botanists struggle to find an arrangement that makes sense in terms of both the physical similarities of the plants and in terms of the phylogenetic processes that lead to the pteridophytes that we know today.

The literature of pteriodphyte classification is vast, from all levels from the Divison to the Genus and below at all geographic scales from global to local. Unfortunately, hardly any of this historical material is available via the Internet and equally unfortunately, very little contemporary information is making its waya there.

The arrangement and classification hierachy here is an attempt to draw together a number of elements into a pragmatic structure for storing and finding information about the diversity of ferns and associated plants.

It is important to remember that this classification is an on-going work in progress and and that the content and concepts will change, evolve, even oscillate, over time. As this resource grows, the hierarchy will serve as a practical directory of where information can be found.

To help users find their way around, a number of commonly encountered synonyms or alternative names are being included. These are italicised in the tables.

Comments and input to this list are welcomed; please email the maintainer.

Classification from Division to Class to Order

DivisionSubdivisionClassSubclass Order
LycopodiophytaLycopodiophytinaLycopodiopsidaLycopodiidaeLycopodiales
SellaginellopsidaSellaginellidaeSelaginellales
IsoetopsidaIsoetidaeIsoetales
EquisetophytaEquisetophytinaEquisetopsidaEquisetidaeEquisetales
PsilotophytaPsilotophytinaPsilotopsidaPsilotidaePsilotales
PolypodiophytaPolypodiophytinaPolypodiopsidaMarattiidaeMarattiales
OphioglossidaeOphioglossales
PolypodiidaeOsmundales
Hymenophyllales
Gleicheniales
Schizaeales
Dicksoniales
Cyatheales
Marsiliales
Salviniales
Pteridales
Blechnales
Davalliales
Polypodiales

Classification from Order to Family to Genus

OrderFamilySubfamilyGenus
LycopodialesLycopodiaceaeHuperzioideaeHuperzia 
-- Phlegmariurus
LycopodielloideaeLycopodiella 
-- Lateristachys
LycopodioideaeLycopodium 
-- Diphasiastrum 
-- Diphasium
PhylloglossoideaePhylloglossum
SelaginellalesSelaginellaceaeSellaginella
IsoetalesIsoetaceaeIsoetes 
-- Stylites
EquisetalesEquisetaceaeEquisetum 
-- Hippochaete
PsilotalesPsilotaceae 
-- Tmesipteridacee
Psilotum 
Tmesipteris
MarattialesMarattiaceae 
-- Angiopteridaceae 
-- Christenseniaceae 
-- Danaeaceae 
-- Kaulfussiaceae
AngiopteridoideaeAngiopteris 
-- Archangiopteris 
-- Macroglossum 
-- Protangiopteris 
-- Protomarattia
'Christensenioideae' ined.Christensenia 
-- Kaulfussia
DannaeoideaeDanaea 
-- Danaeopsis 
-- Heterodanaea
MarattioideaeMarattia 
-- Eupodium
OphioglossalesOphioglossaceae 
-- Botrychiaceae 
-- Helminthostachyaceae
Botrychium 
-- Botrypus 
-- Japanobotrychium 
-- Lunularia 
-- Osmundopteris 
-- Sceptridium
 
Helminthostachys 
-- Botryopteris
 
Ophioglossum 
-- Cheiroglossa 
-- Ophioderma 
-- Rhizoglossum
HymenophyllalesHymenophyllaceae 
-- Trichomanaceae
CardiomanidoideaeCardiomanes
HymenophylloideaeCraspedophyllum 
Hemicyatheon 
Hymenophyllum 
-- Amphipterum 
-- Buesia 
-- Craspedophyllum 
-- Diploophyllum 
-- Hemicyatheon 
-- Leptocionium 
-- Mecodium 
-- Meringium 
-- Myriodon 
-- Myrmecostylum 
-- Pachyloma 
-- Ptychomanes 
-- Ptychophyllum 
-- Rosenstockia
 
Polyphlebium 
-- Phlebiophyllum
 
Rosenstockia
TrichomanoideaeAbrodictyum 
Callistopteris 
Cephalomanes 
-- Calistopteris 
-- Davalliopsis 
-- Macroglena 
-- Nesopteris 
-- Selenodesmium
 
Crepidomanes 
-- Craspedoneuron 
-- Crepidium 
-- Crepidophyllum 
-- Crepidopteris 
-- Gonocormus 
-- Lacosteopsis 
-- Leucomanes 
-- Microtrichomames 
-- Mortoniopteris 
-- Pleuromanes 
-- Reediella 
-- Taschneria 
-- Vandenboschia
 
Gonocormus 
Hymenoglossum 
Microtrichomanes 
Nesopteris 
Pleruomanes 
Polyphlebium 
Serpyllopsis 
Sphaerocionium 
-- Apteropteris 
-- Dermatophlebium
 
Trichomanes 
-- Abrodictyum 
-- Didymoglossum 
-- Feea 
-- Hemiphlebium 
-- Homoeotes 
-- Hymenostachys 
-- Lacostea 
-- Lecanolepis 
-- Macroglena 
-- Mascalosorus 
-- Microgonium 
-- Neuromanes 
-- Neurophyllum 
-- Odontomanes 
-- Ptilophyllum 
-- Pyxidaria 
-- Ragatelus 
-- Trigonophyllum
HymenophyllopsidaceaeHymenophyllopsis
OsmundalesOsmundaceaeLeptopteris 
Osmunda 
Todea
GleichenialesGleicheniaceae 
-- Dicranopteridaceae
Dicranopteris 
Diplopterygium 
Gleichenia 
Sticherus
PlatyzomataceaePlatyzoma
MatoniaceaeMatonia 
Phanerosorus
StromatopteridaceaeStromatopteris
DipteridaceaeDipteris
CheiropleuriaceaeCheiropleuria
SchizaealesSchizaeaceae 
-- Anemiaceae 
-- Mohriaceae
Actinostachys 
Anemia 
Mohria 
Schizaea
LygodiaceaeLygodium
PlagiogyrialesPlagiogyriaceaePlagiogyria
DicksonialesDicksoniaceae 
-- Culcitaceae 
-- Cystodiaceae 
-- Lophosoriaceae 
-- Thyrsopteridaceae
CibotioideaeCibotium
'Cystodioideae' ined.Cystodium
DicksonioideaeDicksonia
LophosorioideaeLophosoria
ThyropteridoideaeCalochlaena 
Culcita 
Thyrsopteris
Dennstaedtiaceae 
-- Hypolepidaceae 
-- Lindsaeaceae
DennstaedtioideaeBlotiella 
Dennstaedtia 
Histiopteris 
Hypolepis 
Leptolepia 
Lonchitis 
Microlepia 
Oenotrichia 
Paesia 
Pteridium
LindsaeioideaeLindsaea 
Odontosoria 
Ormoloma 
Sphenomeris 
Tapeinidium 
Xyropteris
SaccalomatoideaeOrthiopteris 
Saccoloma
CyathealesCyatheaceaeCyathea
MetaxyaceaeMetaxya
Loxsomataceae 
-- Loxomataceae
Loxsoma 
Loxsomopsis
MarsilealesMarsileaceae 
-- Pilulariaceae
Marsilea
Pilularia
Regnellidium
SalvinialesSalviniaceaeSalvinia
AzollaceaeAzolla
PteridalesActinopteridaceaeActinopteris
Adiantaceae 
-- Cheilanthaceae 
-- Cryptogrammataceae 
-- Hemionitidaceae 
-- Monachosoraceae 
-- Negripteridaceae 
-- Sinopteridaceae 
-- Taeintidaceae
AdiantoideaeAdiantum
CheilanthoideaeAdiantopsis 
Bommeria 
Cheilanthes 
Coniogramme 
Cryptogramma 
Doryopteris 
Hemionitis 
Jamesonia 
Llavea 
Negripteris 
Notholaena 
Paraceterach 
Sinopteris 
Trachypteris
MonachosoroideaeMonachosorum
TaenitoideaeAnogramma 
Austrogramme 
Cerosora 
Eriosorus 
Nephopteris 
Onychium 
Pityrogramma 
Pterozonium 
Syngramma 
Taenitis
ParkeriaceaeCeratopteris
Pteridaceae 
-- Acrostichaceae
PteridoideaeAfropteris 
Anopteris 
Nevrocallis 
Ochropteris 
Pteris
AcrostichoideaeAcrostichum
Vittariaceae 
-- Antrophyaceae
Ananthacorus 
Anetium 
Antrophyum 
Hecistopteris 
Monogramma 
Rheopteris 
Vaginularia 
Vittaria
BlechnalesBlechnaceae 
-- Stenochlaenaceae
BlechnoideaeBlechnum 
Barinea 
Doodia 
Pteridoblechnum 
Sadleria 
Salpichlaena 
Steensioblechnum 
Woodwardia
StenochlaenoideaeStenochlaena
AspleniaceaeAntigramma 
Asplenium 
Camptosorus 
Ceterach 
Diellia 
Holodictyum 
Pleurosorus 
Schaffneria
Dryopteridaceae 
-- Aspidiaceae 
-- Hypoderriaceae 
-- Peranemataceae 
-- Tectariaceae
Acrophorus 
Aenigmopteris 
Amphiblestra 
Arachiodes 
Atalopteris 
Ataxipteris 
Camptodium 
Chlamydogramme 
Coveniella 
Ctenitis 
Cyclodium 
Cyclopeltis 
Cyrtomium 
Diacalpe 
Didymochlaena 
Dryopolystichum 
Dryopsis 
Dryopteris 
Fadyenia 
Heterogonium 
Hypoderris 
Lastreopsis 
Leptorumohra 
Lithostegia 
Maxonia 
Megalastrum 
Nothoperanema 
Peranema 
Phanerophlebia 
Phanerophlebiopsis 
Plecosorus 
Pleocnemia 
Pleuroderris 
Polybotrya 
Polystichopsis 
Polystichum 
Pseudotectaria 
Psomiocarpa 
Pteridrys 
Rumohra 
Stenolepia 
Stigmatopteris 
Tectaria 
Tectaridium 
Triplophyllum
Lomariopsidaceae 
-- Bolbitidaceae 
-- Elaphoglossaceae
Bolbitis 
Elaphoglossum 
Lomagramma 
Lomariopsis 
Peltapteris 
Teratophyllum 
Thysansoria
ThelypteridaceaeAmauropelta 
Ampelopteris 
Amphineuron 
Chingia 
Christella 
Coryphopteris 
Cyclogramma 
Cyclosorus 
Glaphyropteridopsis 
Glaphyropteris 
Goniopteris 
Macrothelypteris 
Meniscium 
Menisorus 
Mesophlebion 
Metathelypteris 
Nannothelypteris 
Oreopteris 
Parathelypteris 
Phegopteris 
Plesioneuron 
Pneumatopteris 
Pronephrium 
Pseudocyclosorus 
Pseudophegopteris 
Sphaerostephanos 
Stegnogramma 
Steiropteris 
Thelypteris 
Trigonospora
Woodsiaceae 
-- Athyriaceae 
-- Hypodematiaceae 
-- Onocleaceae
Acystopteris 
Adenoderris 
Anisocampium 
Athyrium 
Cheilanthopsis 
Cornopteris 
Cystoathyrium 
Cystopteris 
Diplaziopsis 
Diplasium 
Gymnocarpium 
Hemidictyum 
Hypodematium 
Kuniwatsukia 
Lunathyium 
Matteuccia 
Onoclea 
Trichoneuron 
Woodsia
DavallialesDavalliaceae 
-- Gymnogrammitidaceae
DavallioideaeAraiostegia 
Davallia 
Davallodes 
Gymnogrammitis 
Leucostegia
Oleandraceae 
-- Nephrolepidaceae
OleandroideaeArthropteris 
Oleandra 
Psammiosorus
NephrolepidoideaeNephrolepis
PolypodialesPolypodiaceae 
-- Drynariaceae 
-- Loxogrammaceae 
-- Platyceriaceae
DrynarioideaeAglaomorpha 
-- Drynariopsis 
-- Holostachyum 
-- Merinthosorus
 
Drynaria
MicrosoroideaeArthromeris 
Belvisia 
Christiopteris 
Colysis 
Diblemma 
Lecanopteris 
Leptochilus 
Microsorum 
Paraselliguea 
Podosorus 
Polypodiopteris 
Selliguea 
-- Crypsinus 
-- Holcosorus 
-- Phymatopteris
PlatycerioideaePlatycerium 
Pyrrosia 
-- Drymoglossum
 
Saxiglossum
PleopeltoideaeBelvisia 
Dicranoglossum 
Drymotaenium 
Lemmaphyllum 
Lepisorus 
Marginariopsis 
Microgramma 
Neolepisorus 
Neurodium 
Pleopeltis 
Paragramma 
Polypodium 
Solanopteris 
Synammia 
Thylacopteris
PolypodioideaeAnapausia 
Anarthropteris 
Campyloneurum 
Dictymia 
Goniophlebium 
Niphidium 
Pecluma 
Phlebodium 
Polypodium 
Thylacopteris 

Hyalotrichopteris 
Neocheiropteris 
Paragramma 
Pycnoloma 
Synammia
LoxogrammoideaeLoxogramme
Grammitidaceae 
-- Grammitaceae
Acrosorus 
Adenophorus 
Calymmodon 
Ceradenia 
Chrysogrammitis 
Cochlidium 
Ctenopteris 
Glyphotaenium 
Grammitis 
Lellingera 
Prosaptia 
Scleroglossum 
Themelium 
Xiphopteris 
Zygadenia 
Zygophlebia

 




دیدگاه ها : نظرات
آخرین ویرایش: - -

DESCRIPTION OF THE PHYLUM PTERIDOPHYTA

پنجشنبه 3 آذر 1390 05:21 ب.ظ

نویسنده : عسکر اله قلی

 

EUKARYA>ARCHAEPLASTIDA>VIRIDIPLANTAE>STREPTOBIONTA>EMBRYOPHYTA>TRACHEOPHYTA>PTERIDOPHYTA

Pteridophyta (te-ri-DA-fa-ta) os made from two Greek roots that mean winged (pteryz -πτέρυξ); and plant (phyto -φυτό).  The reference is to the wing-like appearance of the compound leaves (fronds) that are characteristic of most ferns.  There are several names used for the ferns, among them are: Polypodiophyta, Filicinophyta, and Moniliformopses.  

 

INTRODUCTION TO THE PTERIDOPHYTA

Ferns are quite successful plants.  They grow as perennial herbs, trees, epiphytes, and floating plants (Figures A-Z).  They have exploited almost all terrestrial and freshwater environments, and dominate in some of them.  Similarly, ferns have dominated terrestrial plant communities to varying degrees since their appearance in the Devonian.  The ferns are megaphyllous plants whose leaves (fronds) usually emerge by circinate vernation.  The leaves also usually are compound and are among the most complex leaves of any in the kingdom of green plants.  Their axes vary in complexity with steles of almost all types possible: protosteles,actinosteles, plectosteles, ectophloic siphonosteles, amphiphloic siphonosteles (solenosteles), dictyosteles, and eusteles (Figure 1).  

 
FIGURE 1. TYPES OF STELES IN VASCULAR PLANTS

A. Simple protostele
A'. Actinostele
A''. Plectostele
B. Ectophloic siphonostele
B'. Amphiphloic siphonostele (solenostele)
B''. Dictyostele
C. Eustele
D. Atactostele, the only stele type not found in the ferns

 

FIGURE 2. MAJOR CLADES OF THE PTERIDOPHYTA

2-4. The Preferns
5. Euphyllophytes
6. Psilotopsida
9. Equisetopsida
10. Marattiopsida
11. Polypodiopsida

 

FIGURE 2.  MAJOR CLADES OF THE PTERIDOPHYTA.  The structure of this cladogram comes from Smith et al. (2006) but informed by Kenrick and Crane (1997), Scheuttpelz and Pryer (2007 and 2008), and Schuettpelz et al. (2006). 
CLADES 2-4: THE PREFERNS

The cladoxylids and coenopterids were the groups of plants, which together are called the preferns.  They showed the spectrum of steps required to form a webbed branch system that we recognize as a megaphyll.  Indeed, the terminal fertile appendage of Cladoxylon (see Figure 3) looked very much like a spore-bearing megaphyll.  The cladoxylids  were monopodial with small microphylls and spore-bearing frond-like branching systems.  Thus, they resembled the Trimerophytophytafrom which they likely emerged.  All extinct, these organisms flourished during the Devonian but died out by its end.  Pearson (1995) believed that the cladoxylids gave rise to the Progymnospermophyta and, thus, to the seed plants. Stewart and Rothwell (1993) demonstrate potential affinities between the cladoxylids and all major groups now considered to be within the Pteridophyta as well as the seed ferns.  However, they end their discussion by saying, "...the Cladoxylids...can be added to our list of plant groups that represent unsuccessful evolutionary 'experiments' that ended in extinction" (Stewart and Rothwell 1993, p. 217).

Cladoxylon (Figure 3) had two types of leaf-like branching systems that were covered by microphylls.  These photosynthetic appendages were small and had open branching.  However, the fertile appendages were flattened into a single plane of dichotomously-branched axes, each of which terminated in a small sporangium.

Pseudosporochnus (Figure 4) grew to be very large and resembled present-day palms or tree ferns.  The lateral branches appeared frond-like with sterile and fertile appendages emerging as dichotomously branched systems.  Unlike Cladoxylon, the fertile appendages of Pseudosporochnus were not flattened.  These plants had a fossil history that ranged through much of the Devonian period.

Calamophyton (Figure 5) had strong monopodial growth with dichotomizing ultimate branches. The microphylls were round in cross section and spirally arranged on the stems. Sporangia occurrred on clusters of recurved stems, which bore striking resemblance to the sporangiophores of the Equisetales.  There were known from the middle Devonian.

Wattieza (Figure 6), whose stumps were know as Eospermatopteris, was one of the earliest trees and formed forests in the Gilboa, New York area during the middle Devonian.  One fossil described by Stein et al. (2007) stood at least 6 m tall.  Most notably, the lateral branching systems behaved as megaphylls in that each system seems to have abscised as a unit, rather than in pieces.

The coenopterids flourished from the Devonian to the end of the Permian when they died out.  The coenopterids were monopodial with spore-bearing frond-like branching systems that may have been the earliest true megaphylls. 

Thomas and Spicer (1987) consider the coenopterids to represent a grade of evolution.  Very likely, they are a paraphyletic group of early ferns that had the earliest megaphylls.  Not surprisingly, members of the group vary from having creeping stems to shrubs to trees.  If they are indeed paraphyletic, each of the following taxa may be a representative of a separate class. 

Stauropteris (Figure 7) was a small shrubby plant from the upper Devonian to the upper Carboniferous.  The axes had alternating pairs of frond-like branches emerging at the nodes.  Elongate sporangia occur on some of the terminal branches. At least one species is heterosporous (Stewart and Rothwell (1993).

Rhacophyton (Figure 8) had large frond-like branching appendages that emerged in a spiral pattern from slender axes.  The sterile appendages had primary pinnae in 2 ranks, each of which had small, dichotomously branching stems around the pinna. The fertile fronds were even more complex.  Some of the primary pinnae were sterile.  The fertile primary pinnae had ball-like dichotomously-branched appendages, each of which terminated in elongate sporangia.  Because the stems were so slender, they likely could not support such large fronds as an upright axis, but must have grown as creeping stems (stolons?).  Some of the stems showed evidence of secondary growth leading Stewart and Rothwell (1993) to suggest that this genus and related taxa may have been associated with the line leading to the Progymnospermophyta.  These appeared in the upper Devonian.  Related taxa persisted through the Carboniferous.

Zygopteris (Figure 9) were creeping or rhizomatous plants from the upper Devonian to the Permian. The rhizomes were covered with frond-like dichotomizing branches, essentially megaphylls, which occurred in two ranks. The stele was H-shaped in mature stems and showed evidence of secondary growth. The sporangia were at the tips or on the abaxial surface of the ultimate branches.

 
FIGURE 3

 
FIGURE 4

 
FIGURE 5

Wattezia-nature05705-f2.2-Stein-et-al-2007.jpg (7155 bytes)
FIGURE 6

 
FIGURE 7

 
FIGURE 8

 
FIGURE 9

CLADE 5: THE EUPHYLLOPHYTES

These are the plants that have megaphyllous leaves.  That is, the megaphyll is a branch system that has become planar and webbed.  Despite the name, size is not an adequate diagnostic character to use in distinguishing megaphylls from microphylls.  Some taxa like Lepididodendron, a microphyllous plant, has very large leaves.  On the other hand, the scale-like megaphylls of cedars are quite small.  The principle character that distinguishes a megaphyll is a leaf-gap in the stele.  This is an opening or gap made by the stele of a branch (called a leaf trace) as it emerges from the stele of main stem (Figure 10).

The steps leading to the formation of a megaphyll are given in Figure 11.  This is a portion of the Telome Theory as proposed by Zimmermann (1952 and 1959), who proposed that all of the main plant organs can be derived from simple Rhynia-like axes called mesomes (sterile axes) and telomes (fertile axes).  Tbe derivation of megaphylls in this scenario is that the dichotomously-branching axis develops an unequal branching form (Figure 11-A) called overtopping.  The lateral branch system then becomes planar (Figure 11-B) and webbing elaborates between the axes.  Thus, a megaphyll is not a structure that evolved de novo but was assembled from existing structures.  Tomescu (2008) argures that such a sequence for megaphyll evolution must have occurred multiple times thus calling into question the homology of early megaphyllous appendages.

 
FIGURE 10

FIGURE 11. EVOLUTION OF A MEGAPHYLL

A. Overtopping
B. Planation
C. Webbing

Image from Bold et al. (1987)

 
CLADE 6.  PSILOTOPSIDA

OPHIOGLOSSALES

Botrichium (see Figure 12) and Ophioglossum are extant ferns that typically produce a single frond each year.  The small upright stem usually is underground with very short internodes.  Each leaf has a sterile pinna and a fertile pinna.  The fertile pinnae are not webbed, but have clusters of large eusporangia that are homosporous.  The sterile pinna can be highly dissected (Botrychium) or entire (Ophioglossum).  The gametophytes of these organisms resemble the carrot-like saprobic gametophytes of Lycopodium.  Although cryptic, Botrychium virginianum (Rattlesnake Fern) plants enjoy a large distributional range that includes temperate to America, Scandinavia, the Himalayas, and parts of Australia.  In addition, the Rattlesnake Fern can be among the oldest in the habitats where they occur (forest floor of rich woods or thickets with acid soils and shade).  I once saw a Botrychium with 45 leaf scars eroding out of a road bank.  That was in an area where the oldest trees were no more than 35 or 40 years old.  Other members of the genus and the class are among the rarest plants in an area.

PSILOTALES

Structurally, the psilophytes would seem to be out of place.  They grow as dichotomizing branching systems that do not have leaves or roots.  Instead, they have a prostrate rhizomatous branching system with rhizoids.  The upright stems are photosynthetic and are covered by enations or microphylls.  The sporangia occur aseusporangiate synangia at the terminus of short lateral stems (Figure 13).  The gametophyte is small, inconspicuous, and saprobic.  Also, it is monoecious, producing both antheridia and archaegonia on the same thallus.

The overall structure of the sporophyte would seem to make them remnants of the earliest radiation of vascular plants.  Such is the classical view that associates the psilophytes with the Rhyniophyta (see the figure from Pearson, 1995).  However, molecular evidence (see Tudge, 2000; and Pryer et al., 2001) suggests that the psilophytes are reduced ferns.  That was the intuition of Bierhorst (1971) who, based on structural evidence, saw a gradation in structure from the psilophytes to the fern families Stromatopteridaceae, Gleichineaceae, and Schizaeaceae.  Indeed, he interpreted the dichotomizing branches of Psilotum (Figure 14) as a highly reduced frond and the leafy branches of Tmesipteris (Figure 15) as modified fronds.  Modern molecular cladistic analyses show that they are sisters to Botrychium +Ophioglossum (e.g. Pryer et al. 2001).  However, morphology-based analyses (e.g. Schneider et al. 2009) suggest that they should be sisters to Equisetopsida.

 
FIGURE 12

 
FIGURE 14

 
FIGURE 15

FIGURE 13. LIFE HISTORY OF PSILOTUM

The sporangium (1-2, a eusporangiate synangium) produces  spores.  They germinate to produce inconspicuous thalloid gametophytes (4), which produce both archaegonia (5) and antheridia (6).  Antheridia release flagellated sperm which fuses with the egg to form a zygote (7).  The embryonic sporophyte (8) emerges from the archaegonium.

 
Image taken from: http://home.manhattan.edu/~frances.cardillo/plants/vascular/whiskfr2.html  
CLADE 9. EQUISETOPSIDA

The horsetails or scouring rushes are distinctive in two ways: they have a stem that is jointed and ribbed and a strobilus of sporangiophores.  Although represented today by a single genus, Equisetum (Figure K), the horsetails have a very long history and diverse representation in the fossil record.  They were especially abundant from the Devonian to the end of the Paleozoic.   A common feature of the class is the production of jointed stems (thus Bold et al. 1987, refer to this group as the Arthrophyta).  Also, branches arise from beneath the leaves rather than the more typical adaxial emergence. The stele is difficult to interpret, but stems appear to grade from siphonostelic to eustelic.  A very distinctive feature of the equisetophytes is the type of complex strobili.  Cones like those of Equisetum(Figure 16)are made of sporangiophores (modified leaves), each with multiple homosporous sporangia.  Equisetum is homosporous and its gametophytes are saprophytic, monoecious, and cryptic (see Figure 17).

Hyenia (Figure 18), a Devonian age equisetophyte, grew as a creeping rhizome from which upright photosynthetic stems emerged.  Some of the terminal branches of Hyenia are loosely-clustered sporophylls whose structures suggest the evolution of the Equisetum-like cone by reduction of internodes and reduction of the sporophylls.  

Calamites (Figure 19) grew as trees with strong monopodial growth and whorled leaves (megaphylls) at the jointed nodes.  Indeed, Calamites showed strong secondary growth. They had compound strobili with heterosporous sporangia.  Gametophytes have not been found in the large extinct forms. These plants appeared in the upper Devonian and persisted to the Permian. Calamites was one of the dominant plants in the great Coal Age forests during the Carboniferous period.

Pseudobornia (Figure 20) were large trees (up to 20m tall) with articulating stems. The dichotomizing branches grew up to 3m long.  These plants appeared appeared to be simpler that Calamites.  They did not show evidence of secondary growth (or, if so, it was limited), and their sporangia were homosporous.  They were restricted to the Upper Devonian and may have given rise to the Calamites line.

Sphenophyllum (Figure 21) were creeping plants with prostrate stems that had solid cores and were triangular in cross-section.  Like Calamites, though,Sphenophyllum had whorls of wedge-shaped leaves.  These plants appeared in the lower Devonian and persisted through the Permian, and may have survived into the early Triassic. 


FIGURE 16

hyenia-toyen.jpg (18633 bytes)
FIGURE 18


FIGURE 19

FIGURE 17. LIFE HISTORY OF EQUISETUM.

The sporophyte (1) produces a terminal strobilus of sporangiophores (2).  Spore tetrads mature with attached elater tissue (3-4).   The gametophyte (5) is inconspicuous and monoecious.  It produces small antheridia (6), and archaegonia (7).  Following syngamy (8), the embryonic sporophyte (9) emerges from the archaegonium.


FIGURE 20


FIGURE 21

Image taken from: http://home.manhattan.edu/~frances.cardillo/plants/vascular/equilc.html  
CLADE 10. MARATTIOPSIDA

The marattiopsids are massive ferns that seem to be sisters to the equisetopsids, and have a fossil history which goes back to the Carboniferous.  Everything about them is large.  Their leaves can be up to 7.5 meters long, and their sporangia likewise are large, eusporangiate, and usually fused into large synangia.  The gametophytes are large, thallose and often perennial causing them to resemble Marchantia. The stems are supported as a palm-like tree by persistent leaf bases and exhibit secondary growth by a polycyclic dictyostele. The fleshy stems and roots often have mucilage chambers in a thick cortex.

A common genus is Angiopteris, a name that means "angel wings" (Figure 22).  The rhizomes are very large and fleshy, some are edible.  One species ofAngiopteris has become an invasive plant on the island of Jamaica.


FIGURE 22

CLADE 11. POLYPODIOPSIDA, THE LEPTOSPORANGIATE FERNS

Most of the living Ferns are assigned to the class, Polypodiopsida.  This class is, by far, the most speciose and most diverse in form of all the living fern groups.  The most fundamental synapomorphic character is the leptosporangium.  This is a particular type of fern sporangium that develops from one or two superficial cells and can have as few as 16 to 32 spores per sporangium.  They have characteristic springy, gracile stalks with a sporangium on the top.  Typically, the sporangium has cells of different thicknesses such that the sporangium dehisces suddenly via a horizontal slit and flings the spores by the combined actions of the sudden opening and the recoil of the springy stalk.  In most taxa the leptosporangia are clustered in sori and usually associated with indusia, extensions of leaf tissue that may cover or surround sori (Figure 23).

 

FIGURE 23. LIFE CYCLE OF PTERIDIUM

A. Fertile megaphyll of the sporophyte

B. Fertile pinna with sorus along the margin of the leaf

C. Leptosporangia emerging from the sorus and covered by a false indusium

D. Cordate gametophyte

E. Archaegonium, antheridium, syngamy to produce a zygote

F. Emergence of an embryonic sporophyte

 

Osmunda (Figure 24) and their relatives have a very complete fossil history which goes back to the Permian. The plants have a short erect stem with persistent leaf bases. The leaves are large with dichotomous venation in the pinnae. Sporangia are more massive than the typical leptosporangiate condition.  Indeed, they appear to be intermediate between a leptosporangiate condition and a eusporangiate condition.  Still, the sporangium has aunistratose wall, but it opens by a longitudinal slit (most leptosporangia open by a horizontal slit). The sporangia never occur in a sorus. The gametophyte is large (up to 5 cm long) and photosynthetic.

The filmy ferns, like Trichomanes (Figure 25), occur mainly in the southern hemisphere and in the tropics. Most are small, with very thin leaves, usuallyunistratose.  Furthermore, the stems are equally delicate and usually protostelic.  Sori are marginal and are surrounded by a cup-shaped indusium. TheTrichomanes species that occurs in Pennsylvania lives entirely as a gametophyte on seeps and protected areas.  They are small branched filaments that reproduce only asexually as gemmae. 

Lygodium (Figure 26) is a member of the Schizaeales, an order that has a fossil history which dates from the Jurassic. Mainly, members of this order are tropical, but Lygodium occurs as far north as Pennsylvania. The sporangium has a thick stalk and an annulus which forms an apical cap (a longitudinal slit in Lygodium). Sporangia may be covered by an indusium-like flap, but the sporangia do not occur in sori. The leaves are quite variable, but usually small. However, the leaves of Lygodium remain meristematic at the tip and continue to grow as vines, more than 30 meters long for each leaf.  Stems are less significant and range from protostelic to dictyostelic. The gametophytes vary from filamentous to carrot-like.

The water ferns are all heterosporous with their gametophytes rarely exceeding the bounds of the spore wall.  This is true both of the megaspore and the microspore.  The plants differ vegetatively though they are all aquatic or semi-aquatic.  Marsilea (Figure 27)  is rhizomatous with leaves which resemble four-leaf clovers. Their rhizomes have a solenostele. At the nodes, leaves and adventitious roots emerge.  At some of the nodes, fertile leaves called sporocarps emerge.  They resemble seeds and remain closed until scarified (either through physical abrasion or through chemical degradation) at which point the gelatinous leaf emerges with its sori filled with sporangia (Figure 28).  I have seen them become particularly abundant in the depressions left by sand traps in abandoned golf courses in the central part of the US.


FIGURE 24


FIGURE 25


FIGURE 26


FIGURE 27

FIGURE 28. LIFE HISTORY OF MARSILEA

The water fern, Marsilea, looks like a four-leaf clover, but circinate vernation gives it away as a fern.  It is rhizomatous from which leaves emerge at the nodes.  The the base of some of the leaves, a sporocarp (a hardened folded leaf with sporangia inside) develops (Top a&b).  The sporocarp develops as a gelatinous ring which allows the sori to emerge into the water (Bottom a&b).  These are heterosporous.  Microspores develop into multiflagellate sperm and the megaspores develop into a megagametophyte which does not exceed the bounds of the spore wall.  The daughter sporophyte grows from the zygote in the archegonium in the megaspore and appears almost like a germinating seed.

Image from Ditmer (1964)

 

The other types of water ferns are the floating ferns.  Azolla, the mosquito fern (Figure 29), floats on the surface of the water.  It resembles small sprigs of red cedar on the water.  When the sunlight is most intense, the plants protect themselves with a red pigments that turns small ponds in the southern US red in the middle of the day.  Although they float on the water surface, they have a noticeable layer of wax on their upper surface.  This serves to reduce desiccation and to help them remain afloat by being caught in the surface tension.  Very often Azolla has a symbiotic Nostoc associated with the plant, presumably providing the plant with usable nitrogen compounds.  I have seen them grow in such densities that they effectively seal off the water surface from mosquitoes.  However, when they are that abundant, they prevent the penetration of light and the pond becomes anoxic.

Cyathea (Figure 30), a common tree fern with a fossil history which goes back to the Jurassic, can be a dominant plant in some tropical forests, particularly the mountain forests.  One such dominant can be seen in El Yunque, the montane rainforest of Puerto Rico.  Cyathea arborea is a robust member of the forest understory and even forms the canopy on steep areas of the mountain.  The trunk is an upright rhizome that can grow 12 o more meters high with a tuft of large leaves at its growing tip.  Thus, from a distance, they resemble palms.  However, the large fiddleheads emerging from the crown label them for what they are.  The sori are rounded on veins and are sheathed by a globose indusium. Dehiscence of the sporangia occurs by a transverse slit, and the gametophyte is thalloid with a midrib.

Dennstaedtia (Figure 31), the hay-scented fern, is common on the edges of woods in the northeastern US.  They grow from vigorous rhizomes that can dive many cm deep into the soil and shoot quickly into clearings.  They share these characteristics with their relatives, Pteridium, the bracken ferns.  They also produce allelopathic compounds that tend to discourage the growth of seed plants.  Thus, they can, when established, have a major impact on the regrowth of a forest.  Some of them are of some economic importance because they are poisonous to sheep and cattle.

Adiantum (Figure 32), the maiden hair fern, is one of the most beautiful ferns.  They grow from a creeping rhizome with distinctive thrice cut compound leaves.  Fertile pinnae are narrower than the sterile ones because the marginal sori are surrounded by a false indusium formed by the margins of the leaves curling over the sori.

Dryopteris (Figure 33), the wood fern, is one of the most conspicuous fern genera in the Eastern Deciduous Forest.  They grow from a rhizome that remains upright and does not creep.  Thus, the leaves tend to emerge in one vase-like cluster.  Each sorus is associated with a bean-shaped indusium.  The species in this genus readily hybridize making the identification of some individuals quite a challenge.

Polypodium (Figure 34) is a common small evergreen plant in the US woodlands.  The common polypody grows as an understory plant in the Eastern Deciduous Forest.  The southern polypody, however, grows as an epiphyte on the branches of large trees like the Live Oak of the southern coastal forests of the US.  Polypodium has sori that are naked.  That is, they are not associated with an indusium, either true or false.




دیدگاه ها : نظرات
آخرین ویرایش: - -

مشخصات دوره دونین

چهارشنبه 2 آذر 1390 10:03 ق.ظ

نویسنده : عسکر اله قلی

این دوره که بین دو دوره کوهزایی (کالدونین و هرسی‌نین) را شامل می‌شود در دونشایر انگلستان (Devonshire) توسط مورچیسون و سدویک در سال 1839 نامگذاری شده است.

مشخصات دوره دونین

دوره دونین از 408 تا 360 میلیون سال پیش به طول انجامید. دونین دوره‌ای حد واسط بین دو چرخه کوهزایی مهم کالدونین و هرسی‌نین به شمار می‌رود. به همین جهت برخی حرکات اپیزوژنیک و خشکی زایی این دوره را مشخصا نمی‌توان به کوه زایی کالدونین یا به هرسی‌نین نسبت داد، ولی معمولا دونین زیرین و میانی جزء کوه زایی کالدونین محسوب می‌گردد. گذر زیرین آن شامل ماسه سنگ قدیمی است و با تمام شدن فسیل گرتپولیتی به نام منوگراتپوس مشخص می‌شود، این حد را با پیدایش سرپایان نیز برابر می‌گیرند. پیشروی دریا در این دوره باعث افزایش مرجانهای روگوزا و تابولاتا که گاهی تا چندین متر بالاتر از سطح دریا و به وسعت چند کیلومتر دیده می شوند، گردید. تقسیمات دونین از نظر اشکوبها عبارتست از: 
تصویر

دونین زیرین

این دوره شامل دو اشکوب به نامهای ژدی‌نین و کوبلانسین می‌باشد.


  • اشکوب ژدی نین: نام آن از ژدین (Gedinne) نام شهر از بلژیک در نواحی آردن (بین فرانسه و بلژیک) گرفته شده است. قسمت زیرین آن از پورنگ ، آرگوز ، شیل و بخش بالایی آن شامل شیلهای رنگین است.

  • اشکوب کوبلانسین (Coblencian): نام آن از کوبلانس (Coblence) در آردن گرفته شده و ماسه سنگهای گری‌وکی از رخساره‌های مهم آن به شمار می‌رود.

دونین میانی

دونین میانی شامل اشکوبهای ایفلین و ژیوسین می‌باشد.


  • اشکوب ایفلین: این اشکوب شامل رسوبات کوارتزیتی شیلی و آهکی است که اولین بار در ناحیه آردن بلژیک مطالعه و نامگذاری شده است.

  • اشکوب ژیوسین (Givetian): این اشکوب نامش از ناحیه ژیوه (Givet) در حد جنوبی دینان در بلژیک مشتق گردیده و شامل رخساره‌های آهکی حای فسیل (Stringocephalus) است.

دونین بالایی

این دوره شامل اشکوبهای فراسنین و فامنین می‌باشد.


  • فراسنین (Frasnian): که در حد جنوبی حوضه دینان مطالعه شده ، نام آن از آهکهای ناحیه فراسن مشتق شده است.

  • فامنین (Fammenian): وجه تسمیه این اشکوب از ناحیه فامن (بین بلژیک و شمال فرانسه) می‌باشد. رخساره‌های این اشکوب بیشتر شیلی است که با ماسه پسامیتی همراه است.

فسیلهای دوره دونین

در این دوره بی‌مهرگان از جمله بازوپایان و دوکفه‌ایها فراوان بوده‌اند. از براکیویودها اسپریفریده ، رینیوکونلیده و استرونومنیده تنوع زیاد داشته‌اند. در اوایل این دوره آمونوئیدها که نرم تنان با صدف پیچیده بودند، به جای ناتیلوئیدها که صدف مستقیم داشتند، فراوان شدند. آمونوئیدها به علت تنوع سریع و کوتاهی دوره عمر جز فسیلهای شاخص دونین تا آخر دوران مزوزوئیک هستند. گرچه دونین به نام دوره ماهیها مشهور شده است، ولی تعداد گونه‌ها در این دوره بیشتر از دوره‌ای بعد نبوده است.

از مهمترین ماهیهای این دوره می‌توان اوسترا کودرم (Ostracoserm) را نام برد که در محیطهای آب شیرین زندگی می‌کرده است. این ماهیها که فاقد دندان و آرواره بودند، دهان باسپری استخوانی پوشیده می‌شده است که در ماهیهای امروزی دیده نمی‌شود. اولین حشره در دونین ظهور می‌یابد. گرایتولیتها از بین رفتند و تری لوبیتها رو به کاهش نهادند. گیاهان خشکی از جمله نهانزادان آوندی در دونین توسعه یافتند. 
تصویر

جغرافیای دیرینه دونین

در این دوره آب دریاها بالا آمد و دریاها در روی خشکیها پیشروی داشتند. عامل اینپیشروی را ذوب شدن یخهای قطبی که در اردویسین تشکیل یافته بودند، می‌دانند. گسترش رسوبات آهکی و تبخیری حاکی از آب و هوای گرم در این دوره است. رسوبات تبخیری در سیلورین به فاصله 30 درجه از استوا تجمع یافتند، ولی رسوبات تبخیری دونین گسترش بیشتری به طرف شمال و جنوب داشته‌‌اند. ماسه سنگهای قرمز که از مهمترین رخساره‌های دونین است، در انگلستان مطالعه شده است. شواهد مغناطیسی بیانگر آن است که قاره‌های شمالی و جنوبی در دونین و کربنیفر بهم نزدیک شده‌اند.

حدود 80 درصد موجودات زنده در کناره‌های قاره‌ها مشابهند. در اوایل دونین کوهها شکل گرفته و رسوبات ماسه سنگی قرمز سبب اتصال بعضی قسمتها شدند که از جنوب تا آمریکای شمالی گسترش داشتند و بعدها با پیشروی دریاها موجودات دریایی توسعه یافتند. در زیردوره دونین پسین قسمت اعظم ایران از دریا پوشیده بوده است. رسوبات فسیل‌وار این زیردوره از شمال بندر عباس تا ایران مرکزی و کوههای البرز گسترش دارند. شواهد پالینولوژیکی حاکی از آن است که در دوره دونین ایران ، استرالیا و عربستان بخشی از قاره آفریقا را تشکیل می‌داده‌اند. 


دیدگاه ها : نظرات
آخرین ویرایش: - -

Devonian tree

دوشنبه 30 آبان 1390 04:19 ب.ظ

نویسنده : عسکر اله قلی

Archaeopteris spp. (progymnosperm tree)

Archaeopteris reconstruction

The First Modern Tree

Archaeopteris spp. account for slightly more than half of the identifiable plant fossils collected at the floodplain pond facies of Red Hill; the pre-fern Rhacophyton accounted for most of the rest. Typically, these fossils were relatively intact abscised branches that were probably blown by the wind into the floodplain pond from elsewhere in the floodplain. Larger woody fossils (i.e., trunks or large branches) have yet to be collected, but one likely and several suggestive root casts have been found. The fossils collected at Red Hill are assignable to four species based on leaf morphology. Most belong to eitherArchaeopteris macilenta or A. hibernica. Two other species, A. halliana and A. obtusa, were much less frequent.

The co-dominance of Archaeopteris andRhacophyton at Red Hill is typical of Late Devonian floodplain localities from the Catskill Delta (New York, Pennsylvania, Virginia, West Virginia). Archaeopteris was also common to abundant in some near-marine Catskill localities, primarily as sea-drifted logs (form genus Callixylon). In addition, Archaeopteris-dominated forests are common in Late Devonian localities from elsewhere in Euramerica (North America and Western Europe), Gondwana (Africa, Antarctica, Australia and South America), China and Siberia. It has been found at paleolatitudes ranging from equatorial to sub-polar. From its first appearance in the middle FrasnianArchaeopteris quickly became an important and typically dominant component of the flora. Indeed, it became the lynchpin of the first true forests. Archaeopterisremained paramount until the end of the Devonian, at which time it mysteriously became extinct.

The dramatic success of Archaeopteris can be attributed to several significant evolutionary innovations. It was essentially the first modern tree. Trunk diameters in excess of 1 m and estimated heights of up to 30 m have been reported. It has long been known that the wood of Archaeopteris (form genus Callixylon) resembled that of modern conifers. But little was known about the tree’s development until the results of a recent studies led by Brigitte Meyer-Berthaud and Stephen Scheckler were published. They discovered that Archaeopteris grew in much the same way as do modern trees.

Until the advent of Archaeopteris, bushy and arborescent plants grew only at the tip of their main axes. Branches formed by the forking of the tips, but if a tip died, then growth would cease. In contrast, Archaeopteris had lateral buds in its trunk and branches. This meant that growth would continue whether the axial growth tip was intact or not. Combined with a bi-directional (bifacial) cambium (a feature found in seed plants and some other vascular plants in which a ring of growing tissue that produces wood both in toward the center and out away from the center), Archaeopteris became a truly perennial plant. Indeed, some individuals apparently lived for at least 40-50 years.

Archaeopteris hallina fossilFossil of Archaeopteris halliana. Photo courtesy of Walt Cressler.

The ability to be a long-lived and actively growing plant enabled Archaeopteris to greatly increase in size. This increase in size was facilitated in part by the continued growth of branch bases to form reinforcing structures that resisted breakage. The increase in size and longevity is also associated with the development of a massive root system that would have been useful for structural support and the uptake of nutrients and water. Prior to the arrival ofArchaeopteris, root systems rarely went deeper than 10 to 20 cm, but depths in excess of 1 m have been reported for this tree. Moreover, its root exhibited perennial root growth and the repeated production of lateral rootlets. The enhanced penetration of soils by its root system appears to have had a profound impact onpedogenesis (the development of soils) during the Late Devonian.

Perennial growth in Archaeopteris may have facilitated another innovation, webbed and planar leaves. Other Late Devonian plants typically had their primary photosynthetic surfaces on either the narrow leaf-like microphylls of lycopsids or a jumble of finely divided branches. Some, such as the ancient "fern"Rhacophyton, had the finer branches arranged in flattened "fronds". This flattened or planar arrangement is a relatively efficient structure with which to intercept light. A partial to complete planar arrangement of ultimate branches is also evident in Archaeopteris. Indeed, the frond-like appearance of many fossil specimens led early investigators to conclude that it was either a fern or a fern-like plant.

fossil of Archaeopteris macilentaFossil of Archaeopteris macilenta. Photo courtesy of Ted Daeschler, ANS.

In addition to planation, the leaves ofArchaeopteris exhibit varying degrees of webbing (i.e., the presence of leafy tissues between fine branches or veins). The extent of webbing differs considerably among leaf species ofArchaeopteris. For example, the distal margins of the incompletely webbed leaves of A. macilentaare deeply incised, while those of the completely webbed leaves of A. halliana, A. hibernica and A. obtusa are smooth. It’s not clear whether the leaf species of Archaeopteris actually represent different biological species or are in fact different leaf variations in one or more species. Also, technically speaking, the leaves are not true leaves. The planated tissues of Archaeopterisattach directly to the woody branch, whereas true leaves are attached via a specialized organ, the stem.

Planated and webbed leaves could improve light interception for Archaeopteris, but they could also increase moisture stress. As the leaves captured CO2 from the air, they would loose water through evaporation. This loss could be compensated for by improved water uptake in the roots, but the plant would dry out if the soil became too dry. One solution to water stress is to shed the leaves during the dry season. Because Archaeopteris had perennial growth buds, it could afford to shed its leaves and then regrow them at a later time. Although it seems very plausible, we don’t know for sure whether Archaeopteris shed its leaves to avoid seasonal drought. But we do know that it was deciduous. Rather than shed individual leaves, however, it shed leafy branch systems that consisted of two orders of smaller branches and the leaves themselves. These systems attached to the main branches at specialized abscission organs and it is these structures that constitute the most commonly fossilized portions of the tree.

fossil of Archaeopteris hibernicaFossil of Archaeopteris hibernicashowing two fertile branches bearing sporangia (spore-bearing organs) in the bottom half of the image. Photo courtesy ofTed Daeschler, ANS.

Although Archaeopteris exhibited numerous unique features in its vegetative organs (leaves, perennial branching, deciduous habit, root system, conifer-like wood), it was relatively conventional in its reproduction. As with most of its contemporary vascular plants, Archaeopterisproduced spores rather than seeds. However, it exhibited what is generally considered to be an advanced system of spore production called heterospory. Heterosporous plants produce two sets of specialized spores: female megaspores and male microspores. This condition, which has evolved independently in several lineages (e.g., barinophytes, stauropterian "ferns" and arborescent lycopsids), is widely believed to be a precursor to seed reproduction. The sporangia ofArchaeopteris are located on two or more rows modified ultimate branches. They can be seen at the bottom of the fossil image of Archaeopteris hibernica to the right.

The history of our understanding of this plant is illustrative of one of the major problems facing paleobotanists: Plant fossils are almost always fragmentary, and the larger the plant, the more difficult it is to relate one fragment to another. Consequently, paleobotanists resort to form taxa (i.e., names are given to distinctive fragments). In the case of Archaeopteris, the leaves and their attached ultimate branches were assigned to the form genus Archaeopteris while the fragments of trunks and major branches were identified as the form genus Callixylon. It was not until Charles S. Beck discovered a museum specimen in which the form genusArchaeopteris as connected to the form genus Callixylon, that these two taxa could be considered a single biological taxon.

Progymnosperms

In response to his discovery, Beck proposed a new group, the progymnosperms, to accommodate this plant with freely shed spores and the conifer-like wood. Soon, other plants were assigned to the progymnosperms on the basis of their reproduction and stem anatomy. Three groups of progymnosperms are now relatively well known: Aneurophytales, Protopityales and Archaeopteridales. The Aneurophytales (e.g., Aneurophyton, Proteokalon,Rellimia, Tetraxylopteris and Triloboxylon) are Middle to Late Devonian plants that are considered to be the most primitive members. They were shrubby plants with three-dimensional branching. Most were homosporous (i.e., one size of spore) but one genus, Tetraxylopteris, produced spores with a considerable range in sizes. The Propityales is represented by a single genus, Protopitys, from the late Early Carboniferous. The Archaeopteridales is represented by Svalbardia(late Middle Devonian) and Archaeopteris (Late Devonian).

progymnosperm diverity over geologic time

The progymnosperms are widely regarded as the ancestors of seed plants. As a group they share several vegetative (e.g., branching patterns and vascular anatomy) and reproductive ( e.g., clusters of paired sporangia that split longitudinally) features with the more primitive trimerophytes of the Early and Middle Devonian. They also have vegetative features otherwise found only with seed plants (e.g., bifacial vascular cambium) and reproductive features otherwise found only in early gymnosperms (e.g., the cell pattern of sporangial epidermis). Differences of opinion occur, however, as to which group of progymnosperms gave rise to early seed plants and whether early seed plants evolved once or several times from progymnosperm stock.




دیدگاه ها : نظرات
آخرین ویرایش: - -

Phylogenetic Tree of the plant kingdom

دوشنبه 23 آبان 1390 06:09 ب.ظ

نویسنده : عسکر اله قلی

 

 

Web Figure 1.2.B



دیدگاه ها : نظرات
آخرین ویرایش: دوشنبه 23 آبان 1390 06:12 ب.ظ

Phylogenetic Tree of Plants -part 1

دوشنبه 23 آبان 1390 05:53 ب.ظ

نویسنده : عسکر اله قلی

 

  • Kingdom Plantae
    • Phylum Chlorophyta (Green algae)
      • Class Chlorophyceae
        • Order Chaetopeltidales
        • Order Chaetophorales
        • Order Chlorococcales (Phytoplankton)
        • Order Oedogoniales
        • Order Phaeophilales
        • Order Sphaeropleales
        • Order Tetrasporales
        • Order Volvocales (Phytoplankton)
      • Class Trebouxiophyceae
        • Order Chlorellales
        • Order Prasiolales
      • Class Ulvophyceae
        • Order Cladophorales
        • Order Dasycladales
        • Order Trentepohliales
        • Order Ulotrichales (Phytoplankton)
        • Order Ulvales
      • Class Prasinophyceae
        • Order Chlorodendrales (Phytoplankton)
        • Order Mamiellales (Phytoplankton)
        • Order Pseudoscourfieldiales (Phytoplankton)
      • Class Bryopsidophyceae
        • Order Bryopsidales
    • Phylum Charophyta
      • Class Mesostigmatophyceae
        • Order Mesostigmatales
      • Class Chlorarachniophyceae
        • Order Chlorokybales
      • Class Zygnematophyceae
        • Order Zygnematales
        • Order Desmidiales
      • Class Charophyceae
        • Order Charales
    • Subkingdom Embryophyte (Land plants)
      • Phylum Marchantiophyta (Liverworts)
        • Class Haplomitriopsida
          • Order Haplomitriales (Calobryales)
          • Order Treubiales
        • Class Jungermanniopsida
          • Order Metzgeriales (Simple thalloids)
          • Order Jungermanniales (Leafy liverworts)
        • Class Marchantiopsida
          • Order Blasiales
          • Order Sphaerocarpales (Bottle liverworts)
          • Order Marchantiales (Complex thalloids)
      • Phylum Anthocerotophyta (Hornworts)
        • Class Anthocerotopsida
          • Order Anthocerotales
          • Order Dendrocerotales
          • Order Notothyladales
      • Phylum Bryophyta (Mosses)
        • Class Takakiopsida
          • Order Takakiales
        • Class Sphagnopsida
          • Order Sphagnales
          • Order Ambuchananiales
        • Class Andreaeopsida
          • Order Andreaeaceae
        • Class Andreaeobryopsida
          • Order Andreaeobryales
        • Class Oedipodiopsida
          • Order Oedipodiales
        • Class Polytrichopsida
          • Order Polytrichales
        • Class Tetraphidopsida
          • Order Tetraphidales
        • Class Bryopsida
          • Subclass Bryidae
            • Order Orthotrichales
            • Order Bryales
            • Order Hypnales
          • Subclass Buxbaumiidae
            • Order Buxbaumiales
          • Subclass Dicranidae
            • Order Archidiales
            • Order Dicranales
            • Order Grimmiales
            • Order Pottiales
            • Order Seligeriales
          • Subclass Diphysciidae
            • Order Diphysciales
          • Subclass Funariidae
            • Order Encalyptales
            • Order Funariales
          • Subclass Timmiidae
            • Order Timmiales
      • Clade Tracheophytes (Vascular plant)
        • Phylum Rhyniophyta
          • Class Rhyniopsida
            • Order Rhyniales
        • Phylum Lycopodiophyta
          • Class Zosterophyllopsida
          • Class Lycopodiopsida (Clubmosses)
            • Order Drepanophycales
            • Order Lycopodiales
          • Class Isoetopsida (Spikemosses, Quillworts, Scale trees)
            • Order Lepidodendrales (388.1~216.5 Mya)
            • Order Isoetales (Quillworts; 171.6 Mya~)
            • Order Selaginellales (Spikemosses; 318.1 Mya~)
        • Phylum Pteridophyta (Fern)
          • Class Psilotopsida
            • Order Ophioglossales
            • Order Psilotales (Fern-like plants)
          • Class Equisetopsida
            • Order Equisetales (Horsetails; 360.7 Mya~)
          • Class Marattiopsida
            • Order Marattiales (391.9 Mya~)
          • Class Pteridopsida
            • Order Osmundales (Flowering ferns; 237 Mya~)
            • Order Hymenophyllales (Filmy ferns)
            • Order Gleicheniales (251 Mya~)
            • Order Schizaeales (183 Mya~)
            • Order Salviniales (Water ferns; 99.6 Mya~)
            • Order Cyatheales (Tree fern; 228 Mya~)
            • Order Polypodiales (388.1 Mya~)
            • Order Blechnales (237 Mya~)
        • Phylum Progymnospermophyta



دیدگاه ها : نظرات
آخرین ویرایش: - -

Phylogenetic Tree of Plants -part 2

دوشنبه 23 آبان 1390 05:52 ب.ظ

نویسنده : عسکر اله قلی

        • Phylum
           Progymnospermophyta
          • Class Progymnospermopsida
            • Order Archaeopteridales
        • Clade Spermatophyte (Seed plants)
          • Phylum Gymnosperms
            • Subphylum Pteridospermatophyta (Seed ferns)
                • Order Callistophytales (360.7~260.5 Mya)
                • Order Glossopteridales (279.5~260.5 Mya)
                • Order Caytoniales (237~99.6 Mya)
              • Class Lyginopteridopsida
                • Order Lyginopteridales (388.1~70.6 Mya)
            • Subphylum Pinophyta (Conifers)
              • Class Pinopsida (Conifers; 383.7 Mya~)
                • Order Cordaitales (307.1~245 Mya)
                • Order Voltziales (279.5~203.6 Mya)
                • Order Pinales (360.7 Mya~)
            • Subphylum Cycadophyta (Cycads)
              • Class Spermatopsida
                • Order Bennettitales (302~37.2 Mya)
                • Order Caytoniales (237~99.6 Mya)
              • Class Cycadopsida (302 Mya~)
                • Order Cycadales (268 Mya~)
            • Subphylum Ginkgophyta (Ginkgo)
              • Class Ginkgoopsida (383.7 Mya~)
                • Order Peltaspermales (360.7~99.6 Mya)
                • Order Ginkgoales (251 Mya~)
            • Subphylum Gnetophyta (Gnetae)
              • Class Gnetopsida
                • Order Gnetales
                • Order Welwitschiales
                • Order Ephedrales
          • Phylum Angiospermae (Flowering plants; 161.2 Mya~)
              • Order Amborellales
              • Order Nymphaeales (65.5 Mya~)
              • Order Austrobaileyales
            • Subphylum Mesangiospermae
                • Order Ceratophyllaceae
                • Order Chloranthaceae
              • Class Magnoliidae (145.5 Mya~)
                  • Order Canellales
                  • Order Laurales (145.5 Mya~)
                  • Order Magnoliales (140.2 Mya~)
                  • Order Piperales
              • Class Monocotyledoneae (monocots)
                  • Order Acorales
                  • Order Alismatales (130 Mya~)
                  • Order Asparagales
                  • Order Dioscoreales (99.6 Mya~)
                  • Order Liliales
                  • Order Pandanales
                  • Order Petrosaviales
                • Subclass Commelinids
                  • Order Arecales (83.5~0 mya)
                  • Order Commelinales
                  • Order Poales
                  • Order Zingiberales (70.6 Mya~)
              • Class Eudicotyledoneae (eudicots; 112 Mya~)
                  • Order Ranunculales (112 Mya~)
                  • Order Proteales (112 Mya~)
                  • Order Gunnerales
                  • Order Caryophyllales (55.4 Mya~)
                  • Order Santalales
                  • Order Saxifragales
                • Subclass Rosids
                  • Order Crossosomatales
                  • Order Geraniales (48.6 Mya~)
                  • Order Myrtales (83.5 Mya~)
                  • Infoclass Eurosids I
                    • Order Celastrales (70.6 Mya~)
                    • Order Malpighiales
                    • Order Oxalidales
                    • Order Fabales (99.6 Mya~)
                    • Order Rosales (112 Mya~)
                    • Order Cucurbitales
                    • Order Fagales (112 Mya~)
                  • Infoclass Eurosids II
                    • Order Brassicales
                    • Order Malvales (125 Mya~)
                    • Order Sapindales (89.3 Mya~)
                • Subclass Asterids
                  • Order Cornales (65 Mya~)
                  • Order Ericales (99.6 Mya~)
                  • Infoclass Euasterids I
                    • Order Garryales
                    • Order Solanales (28.4 Mya~)
                    • Order Gentianales (55.4 Mya~)
                    • Order Lamiales (40.4 Mya~)
                  • Infoclass Euasterids II
                    • Order Aquifoliales
                    • Order Apiales (112 Mya~)
                    • Order Dipsacales (89.3 Mya~)
                    • Order Asterales (70.6 Mya~)




دیدگاه ها : نظرات
آخرین ویرایش: دوشنبه 23 آبان 1390 05:55 ب.ظ

genera of Rubiaceae 3

دوشنبه 23 آبان 1390 05:38 ب.ظ

نویسنده : عسکر اله قلی



دیدگاه ها : نظرات
آخرین ویرایش: - -



تعداد کل صفحات : 18 ... 5 6 7 8 9 10 11 ...
شبکه اجتماعی فارسی کلوب | Buy Website Traffic | Buy Targeted Website Traffic